Creating and Transforming a Second-Rank Antisymmetric Field Tensor $F^{\alpha\beta}$ using

Mathematica

Hee-Joong Yun¹ College of Techno-Sciences, Mokwon University, Daejeon 35349, Korea^a)

(Received 6 August 2014)

List of figure for the paper.

PACS numbers: 07.05.Tp, 41.20.Jb, 03.50.De, 02.70.-C

Keywords: Polarization mode platform, MATHEMATICA Simulation, Jones vector, Polarizer, Helicity

^{a)}Electronic mail: heejy@mokwon.ac.kr

I. LIST OF FIGURE

Figure 1: Manipulate of fields, $\vec{E_1}$ and $\vec{E_2}$ in Eq.(33) observed at the point P in K frame as a function of time(vt).

Figure 2: Manipulating platform visualizing whiskbroom pattern of the electric fields. While change the control parameters(b,t, β , ψ , γ) platform presents different patterns. Autorun platform while clicking \oplus top right .

Figure 3: Electric fields observed at the setup parameters values1 : values1 ={ $c = 1, \gamma = 3, q = 1, \beta = 0.4032, b = 0.1319, t = 0.1123$ }, (a) from the setup values1, (b) by change of $b \rightarrow 0.4713$ and $\beta \rightarrow 0.4013$ from values1 (c) by change of $b \rightarrow 0.6714$ only (d) by change of $t \rightarrow 1.1123 \times 10^{-5}$ only.

Figure 4: Particle of charge q moving at constant velocity \vec{v} passes an observation point P at impact parameter b.

Figure 5: Snapshots of *whiskbroom* pattern, those are lines of electric fields for a particle of the motion near the $\beta = 0.4100$ along to x^1 axis in K' frame. The patterns are snapped from the *shiskbroom* platform (Fig.2) at various β values.

II. FIGURES

FIG. 1. Manipulate of fields, $\vec{E_1}$ and $\vec{E_2}$ in Eq.(33) observed at the point P in K frame as a function of time(vt).

FIG. 2. Manipulating platform visualizing *whiskbroom* pattern of the electric fields. While change the control parameters(b,t,β,ψ,γ) platform presents different patterns. Autorun platform while clicking \oplus top right.

FIG. 3. Electric fields observed at the setup parameters values1 : values1={ $c = 1, \gamma = 3, q = 1, \beta = 0.4032, b = 0.1319, t = 0.1123$ }, (a) from the setup parameters values1, (b) by change of $b \rightarrow 0.4713$ and $\beta \rightarrow 0.4013$ from values1, (c) by change of $b \rightarrow 0.6714$ only (d) by change of $t \rightarrow 1.1123 \times 10^{-5}$ only.

FIG. 4. Particle of charge q moving at constant velocity \vec{v} passes an observation point P at impact parameter b.

FIG. 5. Snapshots of *whiskbroom* pattern, those are lines of electric fields for a particle of the motion near the $\beta = 0.4100$ along to x^1 axis in K' frame. The patterns are snapped from the *shiskbroom* platform (Fig.2) at various β values.